PIXLEY-ROY HYPERSPACES OF ω -GRAPHS

J. D. MASHBURN

ABSTRACT. The techniques developed by Wage and Norden are used to show that the Pixley-Roy hyperspaces of any two ω -graphs are homeomorphic. The Pixley-Roy hyperspaces of several subsets of \mathbf{R}^n are also shown to be homeomorphic.

I. Introduction

Since it was introduced in 1969, the Pixley-Roy hyperspace, PR[X], of a topological space X has been intensely studied with the hope of establishing how the properties of X affect those of PR[X]. This study has met with some success, especially in the area of cardinal functions. However, there is a class of questions which, until recently, eluded investigators: For which spaces X and Y will PR[X] be homeomorphic to PR[Y]? For several years the only results in this area were some embedding results obtained by van Douwen [vD] and Lutzer [L]. In 1985 Wage [W] achieved a breakthrough by developing a technique for breaking up neighborhoods around points in certain spaces which allowed him to define homeomorphisms between those neighborhoods. Using this technique he was able to show that Pixley-Roy hyperspaces of spaces like R or [0,1] are homogeneous. In 1986 Norden [N] extended Wage's technique to one which broke up an entire space. With this he was able to show that the Pixley-Roy hyperspaces of any two P-graphs (one-dimensional polyhedra with a finite number of points removed) are homeomorphic. It follows that the Pixley-Roy hyperspaces of spaces like R, [0,1], and the circle are all homeomorphic. It is the purpose of this paper to use Norden's technique to show that Pixley-Roy hyperspaces of infinite, as well as finite, graphs are all the same.

Definition. A T_2 space X with no isolated points is an ω -graph if there is a countable discrete subset D of X and a countable collection I of pairwise disjoint copies of (0,1) such that $X \setminus D = \bigcup I$, I is locally finite on X, and for every $x \in D$, $\{x\} \cup (\bigcup \{I \in I : x \in \overline{I}\})$ is a neighborhood of x which can be embedded in \mathbb{R}^2 . The set D is called a dividing set for X.

The main result of this paper can be stated as follows.

Received by the editors March 10, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 54B20; Secondary 54F65. Supported by a Summer Research Grant from the University of Dayton.

Theorem 1. If X and Y are ω -graphs then PR[X] is homeomorphic to PR[Y].

§II will consist of preliminary definitions, notation, and observations necessary for the proof of the Theorem 1. Theorem 1 will be proved in §III, and §IV will contain some related results.

We will use PR[X] to denote the Pixley-Roy hyperspace of X. Our notation for the open subsets of PR[X] will be standard. We will use F[A] to denote the set of nonempty finite subsets of a set A, and F'[A] to denote the set of all finite subsets of A. The notation " $X \approx Y$ " will mean that X is homeomorphic to Y.

II. PRELIMINARY MATTERS

Let X be an ω -graph and let X_0 be a dividing set for X. Enumerate X_0 as $\{x_n\colon n<\omega\}$. Let \mathbf{I}_0 be the countable collection of pairwise disjoint copies of (0,1) whose union makes up $X\backslash X_0$. We may assume that every element of I_0 has at least one endpoint in X_0 . For each $n<\omega$ let $\mu(n)$ be the number of elements of $X\backslash X_0$ having x_n as an endpoint. For each $I\in \mathbf{I}_0$, fix a linear structure and orientation for I. Let Q_0 be the set of all midpoints of elements of \mathbf{I}_0 and, for each $p\in X_0$, let O_p be the component of $X\backslash Q_0$ containing p. Then Q_0 is a discrete subset of X and $O_p\cap O_q=\varnothing$ if $p\neq q$.

For each $p \in X_0$ and each $I \in \mathbf{I}_0$ having p as an endpoint, choose a sequence of points in $I \cap O_p$ converging monotonically to p. This can be done because each element of X_0 is the endpoint of at least one element of \mathbf{I}_0 . Let Q_1 be the set of all points of X which are elements either of Q_0 or of the sequences just chosen. Call Q_1 the 1st cut-set of X. Set $\widehat{Q}_1 = Q_1$. Let \mathbf{I}_1 be the countable collection of pairwise disjoint copies of (0,1) whose union makes up $X \setminus (\widehat{Q}_1 \cup X_0)$. Call I_1 the set of intervals in X derived from \widehat{Q}_1 .

Assume that $n < \omega$, that Q_n is a discrete subset of $X \setminus X_0$, and that I_n is a countable collection of pairwise disjoint intervals in X. Let Q_{n+1} , the (n+1)th cut-set of X, be the set of midpoints of elements of I_n and let $\widehat{Q}_{n+1} = \widehat{Q}_n \cup Q_{n+1}$. Let I_{n+1} , the set of intervals in X derived from \widehat{Q}_{n+1} , be the countable collection of pairwise disjoint copies of (0,1) whose union makes up $X \setminus (\widehat{Q}_{n+1} \cup X_0)$. Set $Q = \bigcup_{n < \omega} Q_n$.

For every $1 \le m < \omega$ and every $n < \omega$, let $\mathbf{I}_{m,n} = \{I \in \mathbf{I}_m \colon I \subset O_{x_n}\}$. This is the set of those elements of \mathbf{I}_m which "cluster" around x_n .

For every $1 \leq n < \omega$ let $\Sigma(n)$ be the set of sequences, σ , defined on n+1 such that $\sigma(0), \sigma(1) \in \omega$ and $\sigma(m) \in \{0,1\}$ for all $1 < m \leq n$. Let $m < \omega$. Since $\mathbf{I}_{1,m}$ is countable, it can be enumerated as $\{I_{(m,n)} \colon n < \omega\}$. In this way the set \mathbf{I}_1 is indexed by $\Sigma(1)$. Assume that the elements of $\Sigma(n)$ have been used to index the elements of \mathbf{I}_n . Let $I \in \mathbf{I}_{n+1}$. There is a unique $\sigma \in \Sigma(n)$ such that $I \subset I_{\sigma}$. If I is the left-hand half of I_{σ} , then let τ be the element of $\Sigma(n+1)$ such that $\tau \upharpoonright n+1=\sigma$ and $\tau(n+1)=0$ and set $I_{\tau}=I$. If I is the right-hand half of I_{σ} , then let τ be the element of $\Sigma(n+1)$ such that $\tau \upharpoonright n+1=\sigma$ and $\tau(n+1)=1$ and set $I_{\tau}=I$. Let $\Sigma=\bigcup_{1\leq n<\omega}\Sigma(n)$.

The following lemma consists of observations which are immediate consequences of the previous definitions and its proof is omitted.

Lemma 2. Let $1 \le m \le n < \omega$.

- 1. If $I \in \mathbf{I}_n$ then $I \cap Q_m \neq \emptyset$.
- 2. If $p \in Q_m$ then there are exactly two elements, I_1 and I_2 , of I_n such that p is an endpoint of both I_1 and I_2 . Furthermore, $I_1 \cup I_2 \cup \{p\}$ is
- 3. If $I \in \mathbf{I}_m$ then there are exactly two elements of \mathbf{I}_{m+1} that are subinter-
- 4. If $I_{\sigma} \in \mathbf{I}_n$ then there is exactly one element, $I_{\sigma \uparrow m+1}$, of \mathbf{I}_m that contains
- 5. If $\sigma \in \Sigma(1)$, $\sigma(0) = k$, and $\sigma(1) = 1$, then I_{σ} is the 1th element of
- 6. If $J_{\sigma} \in \mathbf{I}_{n,k}$ then $\sigma \in \Sigma(n)$ and $\sigma(0) = k$. 7. For any $n, k < \omega$, $\{ \text{Int}[\text{Cl}(\bigcup \{ \mathbf{I}_{\sigma} \in I_{n,k} : \sigma(1) > a \})] : a < \omega \}$ forms a local base for x_{ν} .

For each $p \in X$ and each $1 \le n < \omega$ let $\mathbf{A}_n(p) = \{I \in \mathbf{I}_n : p \in \overline{I}\}$ and let $\mathbf{A}_n^*(p) = \bigcup \mathbf{A}_n(p)$. If $p \in Q_n$ then $\mathbf{A}(p)$ and $\mathbf{A}^*(p)$ will denote $\mathbf{A}_{n+1}(p)$ and $\mathbf{A}_{n+1}^*(p)$ respectively. If $B \in PR[X]$ then set $\mathbf{A}_n(B) = \bigcup_{p \in B} \mathbf{A}_n(p)$ and $\mathbf{A}_n^*(p) = \bigcup_{p \in B} \mathbf{A}_n^*(p)$. If $B \in F[Q_n]$ then set $\mathbf{A}(B) = \bigcup_{p \in B} \mathbf{A}(p)$ and $\mathbf{A}^*(B) = \bigcup_{p \in B} \mathbf{A}(p)$ $\bigcup_{p\in B}\mathbf{A}^*(p).$

Set $M_0 = \{\emptyset\}$ and, for each $1 \le n < \omega$, let $M_n = \{E \in F(\widehat{Q}_n) : E \cap Q_m \ne \emptyset\}$ for all $1 \le m \le n$. For $1 \le n < \omega$ call M_n the set of elements of PR[X]compatible with \widehat{Q}_n . Note that if m > n and $E \in M_n$ then $E \cap Q_m = \emptyset$. Also, if $k \neq l$ then $M_k \cap M_l = \emptyset$. For each $n < \omega$ and each $E \in M_n$, let $S_E = \{A \in M_n \in M_n : A \in M_n \in M_n \in M_n : A \in M_n \in M$ $PR[X]: A \cap \widehat{Q}_{n+1} = E$. Thus, if $A \in S_E$ and $E \in M_n$, then $A \cap Q_{n+1} = \emptyset$. The set $\{S_E : E \in M\}$ where $M = \bigcup_{n < \omega} M_n$ is a partition of PR[X] and is called the fundamental partition of PR[X] based on M. If $E \in M_n$ then S_E can be written as $\{A \cup B \cup E : A \in F'[X_0] \text{ and } B \in F'[X \setminus (\widehat{Q}_{n+1} \cup X_0)]\}$. Recall that $X \setminus (\widehat{Q}_{n+1} \cup X_0) = \bigcup \mathbf{I}_{n+1}$.

For each $E \in M_n$ let $\widehat{F}_E = \{I \in \mathbf{I}_{n+1} : I \subset A^*(E)\}$. If $n \ge 2$, let E' = $E \setminus Q_n = E \cap \widehat{Q}_{n-1}$. If $n \ge 3$ then E'' is $E \cap \widehat{Q}_{n-2}$. If n = 2 then set $E'' = \emptyset$. Now let Y be another ω -graph and let Y_0 be a dividing set for Y. Enumerate Y_0 as $\{y_n : n < \omega\}$. Then the function $\lambda : X_0 \to Y_0$ given by $\lambda(x_n) = y_n$ is a bijection. Let J_0 be a countable collection of pairwise disjoint copies of (0,1) whose union is $Y \setminus Y_0$. We may again assume that every element of J_0 has at least one endpoint in Y_0 . Let R_0 be the set of midpoints of elements of J_0 . Let $\{R_n: 1 \le n < \omega\}$ be the collection of cut-sets for Y and set $R = \bigcup_{n>\omega} R_n$. Let P_n be the component of $Y \setminus R_0$ that contains y_n . For each $0 < n < \omega$ let J_n be the set of intervals of PR[Y] derived from R_n , each indexed as before by the elements of Σ . Let $\{N_k : k < \omega\}$ be the collection of sets of elements of PR[Y] compatible with $\{\widehat{R}_k \colon k < \omega\}$ and let $\{T_E \colon E \in N\}$ be the fundamental partition of PR[Y] based on $N = \bigcup_{k < \omega} N_k$. If $E \subset Q$ and $f \colon E \to R$, then f is level preserving if $f(E \cap Q_n) \subset R_n$ for all $n < \omega$.

For each $I \in \mathbf{I}_n$ and $J \in \mathbf{J}_n$ there is a unique linear homeomorphism between I and J that preserves orientation. Denote this homeomorphism by $\eta_{I,J}$. If $\sigma,\tau\in\Sigma(n)$, $I=I_{\sigma\restriction m+1}$, and $J=J_{\tau\restriction m+1}$ for some m< n, then $\eta_{I,J}(I_\sigma)=J_\tau$ if and only if $\sigma(k)=\tau(k)$ for all $m< k\leq n$. If $\Gamma\colon \mathbf{I}_n\to \mathbf{J}_n$ is a bijection, then $\Gamma^*\colon\bigcup\mathbf{I}_n\to\bigcup\mathbf{J}_n$ is the function $\bigcup_{I\in I_n}\eta_{I,\Gamma(I)}$. Γ^* is a homeomorphism that is linear and orientation preserving on each element of \mathbf{I}_n .

Now order each \mathbf{I}_n and \mathbf{J}_n lexicographically using the indices of their elements. These collections then have order-type ω^2 . Let $\mathbf{F} \subset \mathbf{I}_n$ and $\mathbf{G} \subset \mathbf{J}_n$ be equipotent finite sets and let $\gamma \colon F \to G$ be a bijection. Then $\mathbf{I}_n \backslash \mathbf{F}$ and $\mathbf{J}_n \backslash \mathbf{G}$ still have order-type ω^2 , so there is a unique order isomorphism $\Delta_F \colon \mathbf{I}_n \backslash F \to \mathbf{J}_n \backslash G$. Define $\Gamma \colon \mathbf{I}_n \to \mathbf{J}_n$ by $\Gamma = \gamma \cup \Delta_F$. Then Γ is a bijection.

In those situations where more than one F is being considered and subscripts are used to distinguish the various set, the same subscripts will be used to distinguish the corresponding γ , Δ , and Γ functions. For example, the functions associated with F_1 will be γ_1 , Δ_1 , and Γ_1 .

It will be necessary in what follows to compare the index of I_{σ} with that of $\gamma(I_{\sigma})$ or $\Gamma(I_{\sigma})$. In order to facilitate this, we will use $\gamma(\sigma)$ and $\Gamma(\sigma)$ to denote the indices of $\gamma(I_{\sigma})$ and $\Gamma(I_{\sigma})$ respectively.

The next lemma is obvious and its proof is omitted.

Lemma 3. Let $m \leq n < \omega$ and let $\mathbf{F}_1 \subset \mathbf{I}_m$ and $\mathbf{F}_2 \subset \mathbf{I}_n$ with $\{I \in \mathbf{I}_n : I \subset \mathbf{F}_1\} \subset \bigcup \mathbf{F}_2$. If $\gamma_1 : F_1 \to \mathbf{J}_m$ is a one-to-one function and $\gamma_2 : \mathbf{F}_2 \to \mathbf{J}_n$ is defined by $\gamma_2(I) = \Gamma_1^*(I)$, then $\Gamma_1^*(I) = \Gamma_2^*(I)$ for all $I \in \mathbf{I}_n$.

Lemma 4. Let $\mathbf{F} \subset \mathbf{I}_k$ be finite and let $\gamma \colon \mathbf{F} \to \mathbf{J}_k$ be a one-to-one function. Assume that there are $b, c, m < \omega$ such that

- 1. c m > b:
- 2. if $I_{\sigma} \in \mathbf{F}$ then either $\sigma(1) \leq b$ or $\sigma(1) > c$;
- 3. if $I_{\sigma} \in \mathbf{F} \cap \mathbf{I}_{k,n}$ and $m \leq \sigma(1) \leq b$ then $\gamma(I_{\sigma}) \in \mathbf{J}_{k,n}$ and $\gamma(\sigma)(1) \leq b$;
- 4. if $I_{\sigma} \in \mathbb{F} \cap \mathbb{I}_{k,n}$ and $\sigma(1) > c$ then $\gamma(I_{\sigma}) \in \mathbb{J}_{k,n}$ and $\gamma(\sigma)(1) > b$.

Then $\Gamma(I_{\sigma}) \in \mathbf{J}_{k,n}$ and $\Gamma(\sigma)(1) > b$ for all $I_{\sigma} \in \mathbf{I}_{k,n}$ with $\sigma(1) > c$.

Proof. Let $n < \omega$. The elements of $\mathbf{J}_{k,n} \setminus \gamma(\mathbf{F})$ are the images under Δ_F of $\mathbf{I}_{k,n} \setminus \mathbf{F}$. By conditions 2 and 3,

$$\begin{split} |\mathbf{F} \cap \{I_{\sigma} \in \mathbf{I}_{k,n} \colon m \leq \sigma(1) \leq c\}| &= |\mathbf{F} \cap \{I_{\sigma} \in \mathbf{I}_{k,n} \colon m \leq \sigma(1) \leq b\}| \\ &= |\{\gamma(I_{\sigma}) \colon I_{\sigma} \in \mathbf{I}_{k,n} \text{ and } m \leq \sigma(1) \leq b\}| \\ &\leq |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon J_{\sigma} \in \gamma(F) \text{ and } \sigma(1) \leq b\}| \\ &= |\gamma(\mathbf{F}) \cap \{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\}|. \end{split}$$

Also, $|\{I_{\sigma} \in \mathbf{I}_{k,n} : m \le \sigma(1) \le c\}| \ge |\{J_{\sigma} \in \mathbf{J}_{k,n} : \sigma(1) \le b\}|$ because c - m > b. Therefore,

$$\begin{split} |\{I_{\sigma} \in \mathbf{I}_{k,n} \colon m &\leq \sigma(1) \leq c\} \backslash \mathbf{F}| \\ &= |\{I_{\sigma} \in \mathbf{I}_{k,n} \colon m \leq \sigma(1) \leq c\} \backslash (\mathbf{F} \cap \{I_{\sigma} \in \mathbf{I}_{k,n} \colon m \leq \sigma(1) \leq c\})| \\ &\geq |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash (\gamma(\mathbf{F}) \cap \{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\})| \\ &= |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash \gamma(\mathbf{F})|. \end{split}$$

Thus, if $J_{\tau} \in \mathbf{J}_{k,n}$ and $\tau(1) \leq b$ then there is $I_{\sigma} \in \mathbf{I}_{k}$ such that either $I_{\sigma} \in \mathbf{F}$ or $I_{\sigma} \in \mathbf{I}_{k,n}$ and $\sigma(1) \leq c$, and $\Gamma(I_{\sigma}) = \mathbf{J}_{\tau}$. It follows from this and condition 4 that if $I_{\sigma} \in \mathbf{I}_{k,n}$ and $\sigma(1) > c$, then $\Gamma(I_{\sigma}) \in \mathbf{J}_{k,n}$ and $\Gamma(\sigma)(1) > b$.

Lemma 5. Let \mathbf{F}_1 , $\mathbf{F}_2 \subset I_k$ be finite and let $\gamma_1 : \mathbf{F}_1 \to \mathbf{J}_k$ and $\gamma_2 : \mathbf{F}_2 \to \mathbf{J}_k$ be one-to-one functions. Let $a, b, m < \omega$ such that

- 1. b a > m;
- 2. $\{I_{\sigma} \in \mathbb{F}_1 : \sigma(1) \le a\} = \{I_{\sigma} \in \mathbb{F}_2 : \sigma(1) \le a\} = \mathbb{G}; \text{ and }$
- 3. $\gamma_1(I_{\sigma}) = \gamma_2(I_{\sigma})$ for all $I_{\sigma} \in \mathbf{G}$;

and that for i = 1 or 2,

- 4. if $J_{\sigma} \in \gamma_i(\mathbf{F}_i)$ then either $\sigma(1) \leq a$ or $\sigma(1) > b$;
- 5. if $I_{\sigma} \in \mathbb{F}_i$ and $\sigma(1) > b$ then $\gamma_i(\sigma)(1) > a$; and
- 6. for all $n < \omega$, if $J_{\sigma} \in \gamma_i(\mathbf{F}_i) \cap \mathbf{J}_{k,n}$ and $\gamma_i^{-1}(J_{\sigma}) \notin \mathbf{I}_{k,n}$ then $\sigma(1) < m$.

Then $\Gamma_1(I_\sigma) = \Gamma_2(I_\sigma)$ for all $I_\sigma \in \mathbf{I}_n$ with $\sigma(1) \leq a$.

Proof. Let $n < \omega$. By condition 2,

$$\{I_{\sigma} \in \mathbf{I}_{k,n} : \sigma(1) \le a\} \cap \mathbf{F}_1 = \mathbf{I}_{k,n} \cap \mathbf{G} = \{I_{\sigma} \in \mathbf{I}_{k,n} : \sigma(1) \le a\} \cap \mathbf{F}_2$$

and

$$\begin{split} \{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \backslash \mathbf{F}_{1} &= \{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \backslash \mathbf{G} \\ &= \{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \backslash \mathbf{F}_{2}. \end{split}$$

By conditions 2, 3, and 4,

$$\begin{split} \{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash \gamma_{1}(\mathbf{F}_{1}) &= \{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash \gamma_{1}(\mathbf{G}) \\ &= \{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash \gamma_{2}(\mathbf{F}_{2}). \end{split}$$

If $I_{\sigma} \in \mathbf{I}_{k,n} \cap \mathbf{G}$ then $\Gamma_1(I_{\sigma}) = \gamma_1(I_{\sigma}) = \gamma_2(I_{\sigma}) = \Gamma_2(I_{\sigma})$. The values of Γ_1 and Γ_2 on $\{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \setminus \mathbf{G}$ are determined by Δ_1 and Δ_2 respectively. We can establish the equality of Γ_1 and Γ_2 on $\{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \setminus \mathbf{G}$ by showing that this set is no larger than $\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \setminus \gamma_1(\mathbf{G})$. Then, since both Δ_1 and Δ_2 take the α th element of $\{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \setminus \mathbf{G}$ to the

 α th element of $\{J_{\sigma} \in \mathbf{G}J_{k,n} : \sigma(1) \leq b\} \setminus \gamma_1(\mathbf{G})$, they must be equal.

$$\begin{split} |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq b\} \backslash \gamma_{1}(\mathbf{G})| \\ &= |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq a\} \backslash \gamma_{1}(\mathbf{G})| + |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon a < \sigma(1) \leq b\}| \\ & \qquad \qquad \qquad \text{(by condition 4)} \\ &= |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq a\} \backslash (\{\gamma_{1}(I_{\sigma}) \in \mathbf{J}_{k,n} \colon I_{\sigma} \in \mathbf{G} \backslash \mathbf{I}_{k,n}\}) \\ & \qquad \qquad \cup \{\gamma_{1}(I_{\sigma}) \in \mathbf{J}_{k,n} \colon I_{\sigma} \in \mathbf{G} \cap \mathbf{I}_{k,n}\})| \\ & \qquad \qquad \qquad + |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon a < \sigma(1) \leq b\}| \\ & \geq |\{J_{\sigma} \in \mathbf{J}_{k,n} \colon \sigma(1) \leq a\} \backslash \{\gamma_{1}(I_{\sigma}) \in \mathbf{J}_{k,n} \colon I_{\sigma} \in \mathbf{G} \cap \mathbf{I}_{k,n}\}| \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \text{(by conditions 1 and 6)} \\ &= |\{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \backslash \{I_{\sigma} \in \mathbf{G} \cap \mathbf{I}_{k,n} \colon \gamma_{1}(I_{\sigma}) \in \mathbf{J}_{k,n}\}| \\ & \geq |\{I_{\sigma} \in \mathbf{I}_{k,n} \colon \sigma(1) \leq a\} \backslash \mathbf{G}|. \end{split}$$

III. PROOF OF THEOREM 1

Let X and Y be ω -graphs with dividing sets X_0 and Y_0 . We will use the structures and definitions developed in §II. Let $g\colon Q_1\to R_1$ be a bijection such that $g(Q_1\cap O_n)=R_1\cap P_n$ for all $n<\omega$. Then $g(Q_0)=R_0$. For our convenience later in the proof, we will assume that the first $\mu(n)$ elements of any $\mathbf{I}_{m,n}$ are those elements of $\mathbf{I}_{m,n}$ having an element of Q_0 as an endpoint. The homeomorphism we will define is essentially that defined by Norden in

[N]. Define $\Gamma_{\phi} \colon \mathbf{I}_{1} \to \mathbf{J}_{1}$ by $\Gamma_{\phi}(I_{\sigma}) = J_{\sigma}$, and $h_{\phi} \colon \bigcup \mathbf{I}_{1} \to \bigcup \mathbf{J}_{1}$ by $h_{\phi} = \Gamma_{\phi}^{*}$. Then h_{ϕ} is a homeomorphism. Set $\theta(\phi) = \phi$.

Let $E \in M_1$. Set $f_E = g \upharpoonright E$ and $\theta(E) = f_E(E)$. Let $\mathbf{F}_E = \widehat{\mathbf{F}}_E$ and $\mathbf{F}_{\theta(E)} = \widehat{\mathbf{F}}_{\theta(E)}$. Each $I \in \mathbf{F}_E$ is adjacent to exactly one element of E and each element of E is the endpoint of exactly two elements of F_E . Similarly, each element of $F_{\theta(E)}$ is adjacent to exactly one element of $\theta(E)$ and each element of $\theta(E)$ is the endpoint of exactly two elements of $F_{\theta(E)}$. Define $\gamma_E \colon \mathbf{F}_E \to \mathbf{F}_{\theta(E)}$ as follows. Let $I \in \mathbf{F}_E$ and let $p \in E$ be an endpoint of I. If p is the right-hand endpoint of I, then set $\gamma_E(I)$ equal to the element of $\mathbf{F}_{\theta(E)}$ which has g(p) for its right-hand endpoint. If p is the left-hand endpoint of I, then set $\gamma_E(I)$ equal to the element of $\mathbf{F}_{\theta(E)}$ which has g(p) for its lefthand endpoint. Then γ_E is a bijection. Define $h_E: (\bigcup \mathbf{I}_2) \cup E \to (\bigcup \mathbf{J}_2) \cup \theta(E)$ by $h_E = \Gamma_E^* \cup f_E$. Both Γ_E^* and f_E are bijections so h_E is a bijection. It is also a homeomorphism on $\bigcup I_2$ because Γ_E^* is. Let $x \in E$ and let V be a neighborhood of $f_E(x)$ in Y. By the definition of γ_E there is a neighborhood U of x in $A^*(x) \cup \{x\}$ such that $h_E(U) \subset V$. Thus h_E is continuous at x. A similar argument shows that h_E^{-1} is continuous at $h_E(x)$, so h_E is a homemorphism.

Let $2 \le 1 < \omega$ and assume that for all k < 1 and all $E \in M_k$,

- 1. $f_E \colon E \to \widehat{R}_k$ is a level preserving one-to-one function and $\theta(E) = f_E(E)$;
- 2. $\mathbf{F}_E \subset \mathbf{I}_{k+1}$ and $\mathbf{F}_{\theta(E)} \subset \mathbf{J}_{k+1}$ are finite and $\gamma_E \colon \mathbf{F}_E \to \mathbf{F}_{\theta(E)}$ is a bijection; and
- 3. the function $h_E\colon (\bigcup \mathbf{I}_{k+1})\cup E \to (\bigcup \mathbf{J}_{k+1})\cup \theta(E)$ given by $h_E=\Gamma_E^*\cup f_E$ is a homeomorphism.

Fix $E\in M_l$. Each element of $E\cap Q_l$ is the midpoint of some element of I_{l-1} and $h_{E''}$, which is defined on $\bigcup I_{l-1}$, takes midpoints to midpoints. Thus $h_{E''}(p)\in R_l$ for all $p\in E\cap Q_l$. Define $f_E\colon E\to \widehat{R}_l$ by

$$f_E(p) = \left\{ \begin{array}{ll} h_{E'}(p) & \text{ if } p \in E \cap \widehat{Q}_{l-1} \,, \\ h_{E''}(p) & \text{ if } p \in E \cap Q_l. \end{array} \right.$$

Then f_E is a one-to-one level preserving function. Note that if $p \in E \cap \widehat{Q}_{l-1}$ then $f_E(p) = h_{E'}(p) = f_{E'}(p)$. Extending this backward, we can see that if $1 \le k < l$ and $p \in E \cap \widehat{Q}_k$ then $f_E(p) = f_{E \cap \widehat{O}_k}(p)$.

Let $\mathbf{F}_{E1} = \mathbf{A}(E \cap Q_l)$ and $\mathbf{F}_{\theta(E)1} = \mathbf{A}(\theta(E) \cap R_l)$. Let $I \in \mathbf{F}_{E1}$ and let $p \in E \cap Q_l$ be and endpoint of I. Then $f_E(p) = h_{E''}(p) \in R_l$ and $h_{E''}(p)$ is an endpoint of $h_{E''}(I)$ because $h_{E''}$ is continuous. Thus $h_{E''}(I) \in \mathbf{F}_{\theta(E)1}$. A similar argument shows that if $h_{E''}(I) \in \mathbf{F}_{\theta(E)1}$ then $I \in \mathbf{F}_{E1}$.

Let $\mathbf{F}_{E2} = \{I \in \widehat{\mathbf{F}}_E \backslash \mathbf{F}_{E1} \colon h_{E'}(I) \in \widehat{\mathbf{F}}_{\theta(E)} \backslash \mathbf{F}_{\theta(E)1} \}$ and let $\mathbf{F}_{\theta(E)2} = \{J \in \widehat{\mathbf{F}}_{\theta(E)} \backslash \mathbf{F}_{\theta(E)1} \colon h_{E'}^{-1}(J) \in \widehat{\mathbf{F}}_E \backslash \mathbf{F}_{E1} \}$. Clearly $I \in \mathbf{F}_{E2}$ if and only if $h_{E'}(\mathbf{I}) \in \mathbf{F}_{\theta(E)2}$. Set $\mathbf{F}_E = \mathbf{F}_{E1} \cup \mathbf{F}_{E2}$ and $\mathbf{F}_{\theta(E)} = \mathbf{F}_{\theta(E)1} \cup \mathbf{F}_{\theta(E)2}$. Define $\gamma_E \colon \mathbf{F}_E \to \mathbf{F}_{\theta(E)}$ by

$$\gamma_E(I) = \left\{ \begin{array}{ll} h_{E^{\prime\prime}}(I) & \text{ if } I \in \mathbb{F}_{E1} \,, \\ h_{E^\prime}(I) & \text{ if } I \in \mathbb{F}_{E2}. \end{array} \right.$$

Then γ_E is a bijection.

Define $h_E\colon (\bigcup \mathbf{I}_{l+1})\cup E \to (\bigcup \mathbf{J}_{l+1})\cup \theta(E)$ by $h_E=\Gamma_E^*\cup f_E$. The function h_E is a bijection because Γ_E^* and f_E are bijections and is a homemorphism on $\bigcup \mathbf{I}_{l+1}$ because Γ_E^* is. If $p\in E\cap Q_l$ then $\mathbf{A}(p)\subset \mathbf{F}_{E1}$ and $h_E(\mathbf{A}^*(p)\cup \{p\})=h_{E''}(\mathbf{A}^*(p)\cup \{p\})$. Now let $p\in E'$. If $I\in \mathbf{A}_{l+1}(p)$ then $I\in \widehat{\mathbf{F}}_E$. Since p is an endpoint of I and $p\in \widehat{Q}_{l-1}$, the other endpoint of I must be an element of Q_{l+1} . Hence $I\not\in \mathbf{F}_{E1}$. To show that $h_{E'}(I)\in \widehat{\mathbf{F}}_{\theta(E)}\backslash \mathbf{F}_{\theta(E)1}$, note that $p\in E'$ and $h_{E'}$ is continuous on $(\bigcup I_l)\cup E'$. So $f_E(p)=\mathbf{F}_{E'}(p)$ is an endpoint of $h_{E'}(I)$. But $f_{E'}$ is level preserving, so $f_{E'}(p)\in \widehat{R}_{l+1}$. Again, the other endpoint of $h_{E'}(I)$ must be an element of R_{l+1} . Hence $h_{E'}(I)\in \widehat{\mathbf{F}}_{\theta(E)}\backslash \mathbf{F}_{\theta(E)1}$. It follows that $\mathbf{A}_{l+1}(p)\subset \mathbf{F}_{E2}$ and $h_E(\mathbf{A}_{l+1}^*(p)\cup \{p\})=h_{E'}(\mathbf{A}_{l+1}^*(p)\cup \{p\})$. But $h_{E'}$ is a homeomorphism on $(\bigcup \mathbf{I}_l)\cup E'$ and $h_{E''}$ is a homeomorphism on $(\bigcup \mathbf{I}_{l+1})\cup E$.

Notice that for any $k < \omega$, $E \in M_k$, $x_n \in X_0$, and $I_{\sigma} \in \mathbf{I}_{k,n}$, if $\Gamma_E(I_{\sigma}) \not\in \mathbf{J}_{k,n}$ then $\sigma(1) < \mu(n)$ because only the first $\mu(n)$ elements of $\mathbf{I}_{1,n}$ have endpoints in Q_0 .

For all $n < \omega$ and all $E \in M_n$, define $H_E \colon S_E \to T_{\theta(E)}$ by $H_E(A) = \lambda(A \cap X_0) \cup h_E(A \setminus X_0)$. Finally, define $H \colon \operatorname{PR}[X] \to \operatorname{PR}[Y]$ by $H = \bigcup_{E \in M} H_E$. To show that H is a bijection it is sufficient to show that θ is a bijection. Let $E, D \in M$ and $E \neq D$. Then $\theta(E) = f_E(E)$ and $\theta(D) = f_D(D)$. Both f_E and f_D are level-preserving one-to-one functions, so $\theta(E) \neq \theta(D)$ if $E \in M_k$ and $D \in M_l$ and $k \neq l$. Assume that $E, D \in M_1$. Then $\theta(E) = g(E) \neq g(D) = \theta(D)$ since g is a bijection. Assume that $E, D \in M_k$ for some k > 1. Either $E \cap Q_k \neq D \cap Q_k$ or $E' \neq D'$. But the functions $h_{E'}$, $h_{E''}$, $h_{D'}$, and $h_{D''}$ are all one-to-one, so either $h_{E''}$ ($E \cap Q_k$) $\neq h_{D''}$ ($D \cap Q_k$) or $h_{E'}$ (E') $\neq h_{D'}$ (D'). In either case, $\theta(E) \neq \theta(D)$.

Let $A \in S_E$ where $E \in M_k$ and let V be a neighborhood of H(A) in Y. Pick $a < \omega$ such that if $I_{\sigma} \in \mathbf{A}_1(A)$ then $\sigma(1) \leq a$ and if $J_{\sigma} \in \mathbf{A}_1(H(A))$ then $\sigma(1) \leq a$. Let $m = \max\{\mu(n) \colon \mathbf{A}_1(A) \cap \mathbf{I}_{1,n} \neq \varnothing \text{ or } \mathbf{A}_1(H(A)) \cap \mathbf{J}_{1,n} \neq \varnothing\} + 1$. Pick $b \in \omega$ such that b - m > a and

$$\operatorname{Int}\left[\operatorname{Cl}\left(\bigcup\{J_{\sigma}\in\mathbf{J}_{1,n}\colon\sigma(1)>b\}\right)\right]\subset V$$

for all $y_n \in H(A) \cap Y_0$. Set

$$V_{y_n} = \operatorname{Int}\left[\operatorname{Cl}\left(\bigcup\{J_{\sigma} \in \mathbf{J}_{1,n} \colon \sigma(1) > b\}\right)\right]$$

and set $V_0 = \bigcup_{p \in H(A) \cap Y_0} V_p$. Pick $c \in \omega$ such that c - m > b and if $x_n \in A \cap X_0$ and $p \in Q_1 \cap \operatorname{Int}[\operatorname{Cl}(\bigcup \{I_\sigma \in \mathbf{I}_{1,n} \colon \sigma(1) > c\})]$, then $g(p) \in V_{y_n}$. For each $x_n \in A \cap X_0$ set $U_{x_n} = \operatorname{Int}[\operatorname{Cl}(\bigcup \{I_\sigma \in \mathbf{I}_{1,n} \colon \sigma(1) > c\})]$. Let $U_0 = \bigcup_{p \in A \cap X_0} U_p$. If $A \cap X_0 = \emptyset$ then set $U_0 = \emptyset$. Pick $r \geq k + 1$ such that $h_E(\mathbf{A}_r^*(p)) \subset V$ for all $p \in A \setminus X_0$. Set $U_p = \mathbf{A}_r^*(p) \cup \{p\}$ for $p \in A \setminus X_0$ and set $U_1 = \bigcup_{p \in A \setminus X_0} U_p$. Let $U = U_0 \cup U_1$. Note that:

- 1. if $I_{\sigma} \cap U_1 \neq \emptyset$ then $\sigma(1) \leq a$;
- 2. if $\vec{J}_{\sigma} \cap (H(A) \setminus Y_0) \neq \emptyset$ then $\sigma(1) \leq a$;
- 3. if $I_{\sigma} \cap U_{x_n} \neq \emptyset$ for some $x_n \in A \cap X_0$ then $I_{\sigma \uparrow 1} \in I_{1,n}$ and $\sigma(1) > c$;
- 4. if $J_{\sigma} \cap V_{y_n} \neq \emptyset$ for some $y_n \in H(A) \cap Y_0$ then $J_{\sigma \upharpoonright 1} \in \mathbf{J}_{1,n}$ and $\sigma(1) > b$;
- 5. if $p \in A \setminus X_0$ then $U_p \cap \widehat{Q}_{k+1} \subset \{p\}$.
- 6. a,b,c and m satisfy condition 1 in Lemmas 4 and 5; and
- 7. if $I_{\sigma} \in \mathbf{I}_{1,n}$ and $m \le \sigma(1)$ then $H_D(I_{\sigma}) \subset \bigcup \mathbf{J}_{1,n}$ for any $0 < 1 < \omega$, $n < \omega$, and $D \in M$.

The heart of the proof that $H([A, U]) \subset [H(A), V]$ is contained in Lemmas 6 and 7.

Lemma 6. Let $D \in M_j$ where $1 \le j \le k$, $D \subset U$, and $D \cap U_1 = E \cap \widehat{Q}_j$. Let $C = E \cap \widehat{Q}_j$. Then

1. if $p \in D \cap U_q$ for some $q \in A \cap X_0$ then $f_D(p) \in V_{\lambda(q)}$;

- 2. if $p \in D \cap U_q$ for some $q \in E$ then p = q and $f_D(p) = F_E(p)$;
- 3. if $I_{\sigma} \in \mathbf{I}_{j+1}$ and $\sigma(1) \leq a$ then $\Gamma_{C}(I_{\sigma}) = \Gamma_{D}(I_{\sigma})$; and
- 4. if $I_{\sigma} \in \mathbf{I}_{j+1,n}$, $x_n \in A \cap X_0$, and $\sigma(1) > c$, then $\Gamma_D(I_{\sigma}) \in \mathbf{J}_{j+1,n}$ and $\Gamma_D(\sigma)(1) > b$.

Proof. To begin with, let us take note of three useful facts. First, since $\Gamma_{\phi}(I_{\sigma})=J_{\sigma}$ for all $I_{\sigma}\in I_{1}$, if $I_{\sigma}\in I_{1,n}$ and $\sigma(1)>c$, then $\Gamma_{\phi}(I_{\sigma})=J_{\sigma}\in \mathbf{J}_{1,n}$ and $\Gamma_{\phi}(\sigma)(1)=\sigma(1)>c>b$. Also, for any j, if $p\in C$ then $f_{C}(p)=f_{E}(p)$. Furthermore, if $I_{\sigma}\in F_{D}$ then either $\sigma(1)\leq a< b$ or $\sigma(1)>c$.

Let j=1. Then $D\subset Q_1$ and $D\cap U_1=E\cap Q_1$. Let $p\in D$. If $p\in U_q$ for some $q\in A\cap X_0$, then $f_D(p)=g(p)\in V_{\lambda(q)}$. If $p\in U_q$ for some $q\in A\backslash X_0$, then $q\in E$, p=q, and $f_D(p)=g(p)=f_C(p)$.

Let $n < \omega$ and let $I_{\sigma} \in \mathbf{I}_{2,n} \cap \mathbf{F}_D$ with $\sigma(1) > c$. Let $p \in D$ be an endpoint of I_{σ} . Since $\sigma(1) > c$, p must be in U_{x_n} . Then $f_D(p)$, which is an endpoint of $\gamma_D(I_{\sigma})$, is in V_{y_n} . Thus $\gamma_D(I_{\sigma}) \in \mathbf{J}_{2,n}$ and $\gamma_D(\sigma)(1) > b > a$.

It follows from $D \cap U_1 = C$ that $F_C = \{I_\sigma \in \mathbf{F}_D \colon \sigma(1) \leq a\}$. Let $I_\sigma \in \mathbf{F}_C$. Let $p \in D$ be an endpoint of I_σ . Then p must be an element of U_1 , so $f_D(p) = f_E(p) = f_C(p)$. Thus $f_E(p)$ is an endpoint for both $\gamma_C(I_\sigma)$ and $\gamma_D(I_\sigma)$. Since both γ_C and γ_D preserve orientation, it must be true that $\gamma_C(I_\sigma) = \gamma_D(I_\sigma)$. Also, $\gamma_D(\sigma)(1) \leq a < b$ because $f_D(p) \in H(A) \setminus Y_0$.

By Lemma 4, if $I_{\sigma} \in \mathbf{I}_{2,n}$ and $\sigma(1) > c$, then $\Gamma_D(I_{\sigma}) \in \mathbf{J}_{2,n}$ and $\Gamma(\sigma(1)) > b$. By Lemma 5, if $I_{\sigma} \in \mathbf{I}_2$ and $\sigma(1) \le a$, then $\Gamma_D(I_{\sigma}) = \Gamma_C(I_{\sigma})$.

Let $2 \leq j \leq k$ and assume that the lemma is valid for all $1 \leq i < j$ and all $D \in M_i$ with $D \subset U$ and $D \cap U_1 = E \cap \widehat{Q}_i$. Let $D \in M_j$ with $D \subset U$ and $D \cap U_1 = E \cap \widehat{Q}_j$. Then $D' \in M_{j-1}$, $D' \subset U$, and $D' \cap U_1 = E \cap \widehat{Q}_{j-1} = C'$, so the lemma is valid for D'. If j = 2, then $D'' = C'' = \emptyset$. If j > 2, then $D'' \in M_{j-2}$, $D'' \subset U$, and $D'' \cap U_1 = E \cap \widehat{Q}_{j-2} = C''$. Thus the lemma is valid for D''.

Let $p\in D\cap U_{x_n}$ for some $x_n\in A\cap X_0$. If $p\in \widehat{Q}_{j-1}$ then $f_D(p)=f_{D'}(p)\in V_{y_n}$. If $p\in Q_j$ then $f_D(p)=h_{D''}(p)$. Now p is the midpoint of some element I_σ of $I_{j-1,n}$ where $\sigma(1)>c$. But $\Gamma_{D''}(I_\sigma)\in J_{j-1,n}$, $\Gamma_{D''}(\sigma)(1)>b$, and $h_{D''}(p)$ is the midpoint of $\Gamma_{D''}(I_\sigma)$. Hence $f_D(p)\in V_{y_n}$.

Let $p\in D\cap U_q$ for some $q\in A\backslash X_0$. Then $q\in E$ and q=p. If $p\in \widehat{Q}_{j-1}$ then $f_D(p)=f_{d'}(p)=f_E(p)$. If $p\in Q_j$ then

$$f_D(p) = h_{D^{''}}(p) = \Gamma_{D^{''}}^*(p) = \Gamma_{C^{''}}^*(p) = h_{C^{''}}(p) = f_C(p) = f_E(p).$$

Let $n<\omega$ and let $I_{\sigma}\in F_{D}\cap \mathbf{I}_{j+1,n}$ with $\sigma(1)>c$. Either $\gamma_{D}(I_{\sigma})=\Gamma_{D'}^{*}\left(I_{\sigma}\right)$ or $\gamma_{D}(I_{\sigma})=\Gamma_{D''}^{*}\left(I_{\sigma}\right)$. In either case, $\gamma_{D}(I_{\sigma})\in \mathbf{J}_{j+1,n}$ and $\gamma_{D}(\sigma)(1)>b>a$.

It follows from the inductive hypotheses that $\mathbf{F}_{C1} = \{I_{\sigma} \in \mathbf{F}_{D1} \colon \sigma(1) \leq a\}$ and $\mathbf{F}_{C2} = \{I_{\sigma} \in \mathbf{F}_{D2} \colon \sigma(1) \leq a\}$. Thus $\mathbf{F}_{C} = \{I_{\sigma} \in \mathbf{F}_{D} \colon \sigma(1) \leq a\}$. Let $I_{\sigma} \in \mathbf{F}_{C}$. If $I_{\sigma} \in \mathbf{F}_{D1}$ then $\gamma_{D}(I_{\sigma}) = \Gamma_{D''}^{*}(I_{\sigma})$. But $\Gamma_{D''}^{*}(I_{\sigma}) = \Gamma_{C''}^{*}(I_{\sigma})$ so $\gamma_{D}(I_{\sigma}) = \gamma_{C}(I_{\sigma})$. If $I_{\sigma} \in \mathbf{F}_{D2}$ then $\gamma_{D}(I_{\sigma}) = \Gamma_{D'}^{*}(I_{\sigma})$. But $\Gamma_{D'}^{*}(I_{\sigma}) = \Gamma_{C'}^{*}(I_{\sigma})$ so $\gamma_{D}(I_{\sigma}) = \gamma_{C}(I_{\sigma})$. In either case, $\gamma_{D}(\sigma)(1) \leq a < b$.

By Lemma 4, if $I_{\sigma} \in \mathbf{I}_{j+1,n}$ and $\sigma(1) > c$, then $\Gamma_D(I_{\sigma}) \in \mathbf{J}_{j+1,n}$ and $\Gamma_D(\sigma)(1) > b$. By Lemma 5, if $I_{\sigma} \in \mathbf{I}_{j+1}$ and $\sigma(1) \leq a$, then $\Gamma_D(I_{\sigma}) = \Gamma_C(I_{\sigma})$.

Lemma 7. If $k \leq l$, $D \in M_l$, and $E \subset D \subset U$, then

- 1. if $p \in D \cap U_q$ for some $q \in A \cap X_0$ then $f_D(p) \in V_{\lambda(q)}$;
- 2. if $p \in D \cap U_q$ for some $q \in A \setminus X_0$ then $f_D(p) \in V$;
- 3. if $I_{\sigma} \in \mathbf{I}_{l+1,n}$ for some $x_n \in A \cap X_0$ and $\sigma(1) > c$, then $\Gamma_D(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\Gamma_D(\sigma)(1) > b$; and
- 4. if $I_{\sigma} \in I_{l+1}$ and $\sigma(1) \leq a$ then $\Gamma_D(I_{\sigma}) = \Gamma_E^*(I_{\sigma})$.

Note that condition 4 implies that $\gamma_D(\sigma)(1) \le a$ for all $I_\sigma \in \mathbb{F}_D$ with $\sigma(1) \le a$.

Proof. The case k = 1 is given by Lemma 6.

Assume that l=k+1. Then $D'\in M_k$, $D'\subset U$, and $D'\cap U_1=E$. Also, $D''\in M_{k-1}$, $D''\subset U$, and $D''\cap U_1=E'$. So Lemma 6 holds for D' and D''.

Let $p\in D\cap U_{x_n}$ for some $x_n\in A\cap X_0$. if $p\in \widehat{Q}_k$ then $f_D(p)=f_{D'}(p)\in U_{x_n}$. Let $p\in Q_1$. Then p is the midpoint of some element I_σ of $\mathbf{I}_{k,n}$ where $\sigma(1)>c$. Also, $f_D(p)=h_{D''}(p)$ and $h_{D''}(p)$ is the midpoint of $\Gamma_{D''}(I_\sigma)$. But $\Gamma_{D''}(I_\sigma)\in \mathbf{J}_{k,n}$ and $\Gamma_{D''}(\sigma)(1)>b$. Thus $f_D(p)\in U_{x_n}$.

Let $p \in D \cap U_q$ for some $q \in A \backslash X_0$. Now $U_q \cap \widehat{Q}_1 \subset \{q\}$ so p = q and $p \in \widehat{Q}_k$. Thus $f_D(p) = f_{D'}(p) = f_E(p) \in V$.

Let $I_{\sigma} \in \mathbf{F}_{D} \cap \mathbf{I}_{l+1,n}$ for some $x_{n} \in A \cap X_{0}$ and let $\sigma(1) > c$. Either $\gamma_{D}(I_{\sigma}) = \Gamma_{D'}^{*}(I_{\sigma})$ or $\gamma_{D}(I_{\sigma}) = \Gamma_{D''}^{*}(I_{\sigma})$. In either case, $\gamma_{D}(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\gamma_{D}(\sigma)(1) > b > a$.

To show that conditions 3 and 4 hold, consider the sets $\mathbf{F} = \{\mathbf{I} \in I_{l+1} \colon I \subset \bigcup \mathbf{F}_E \}$ and $\mathbf{G} = \{I_{\sigma} \in \mathbf{F}_D \colon \sigma(1) \leq a\}$. Define γ on \mathbf{G} by $\gamma(I) = \Gamma_E^*(I)$. We will show that $\mathbf{F} \subset \mathbf{G}$. Let $I_{\sigma} \in \mathbf{F}$. Then $\sigma(1) \leq a$ and $I_{\sigma \upharpoonright k+1} \in \mathbf{F}_E$. Now $A(E) \subset A(D)$ because $E \subset D$. Also, $A(\theta(E)) \subset A(\theta(D))$. Thus $I_{\sigma} \in \widehat{\mathbf{F}}_D$ and $h_{D'}(I_{\sigma}) = h_E(I_{\sigma}) \in \widehat{\mathbf{F}}_{\theta(D)}$. If $I_{\sigma} \in \mathbf{F}_{D1}$ then there is $p \in D \cap Q_l$ such that p is an endpoint of I_{σ} . Then, since $\sigma(1) \leq a$, $p \in U_1$. But $U_1 \cap Q_l = \emptyset$, so $I_{\sigma} \notin \mathbf{F}_{D1}$. If $p \in D \cap Q_l$ then $p \in U_0$ and $f_D(p) \in V_0$. But $\Gamma_{D'}(\sigma)(1) \leq a$ so $h_{D'}(I_{\sigma})$ cannot have an endpoint in $\theta(D) \cap R_l$. Therefore $h_{D'}(I_{\sigma}) \in \widehat{\mathbf{F}}_{\theta(D)} \setminus \mathbf{F}_{\theta(D)1}$, and $I_{\sigma} \in \mathbf{G}$. By Lemma 3, $\Gamma(I) = \Gamma_E^*(I)$ for all $I \in \mathbf{I}_{l+1}$. If $I \in \mathbf{G}$ then $I \in \mathbf{F}_{D2}$ so $\gamma_D(I) = \Gamma_{D'}^*(I) = \Gamma_E^*(I) = \gamma(I)$. Thus $\gamma_D(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\gamma_D(\sigma)(1) \leq a < b$ for all $I_{\sigma} \in \mathbf{F}_D \cap \mathbf{I}_{l+1,n}$ with $m \leq \sigma(1) \leq b$. By Lemma 4, if $I_{\sigma} \in \mathbf{I}_{l+1,n}$ for some $x_n \in A \setminus X_0$ and $\sigma(1) > c$, then $\Gamma_D(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\Gamma_D(\sigma)(1) > b$. By Lemma 5, $\Gamma_D(I_{\sigma}) = \Gamma_E(I_{\sigma}) = \Gamma_E^*(I_{\sigma})$ for all $I_{\sigma} \in \mathbf{I}_{l+1}$ with $\sigma(1) \leq a$.

Let $l \geq k+2$ and assume that if j=l-1 or j=l-2, $C \in M_j$, and $E \subset C \subset U$, then the lemma holds for C. Let $D \in M_l$ with $E \subset D \subset U$. Then $D \cap U_1 \cap \widehat{Q}_{k+1} = E$. Furthermore $D' \in M_{l-1}$, $E \subset D' \subset U$, $D'' \in M_{l-2}$, and $E \subset D'' \subset U$. Thus the lemma holds for D' and D''.

Let $p\in D\cap U_{x_n}$ for some $x_n\in A\cap X_0$. If $p\in \widehat{Q}_{l-1}$ then $f_D(p)\subset f_{D'}(p)\in V_{y_n}$. If $p\in Q_l$ then p is the midpoint of some $I_\sigma\in \mathbf{I}_{l-1,n}$ with $\sigma(1)>c$. But $f_D(p)=h_{D''}(p)$ is the midpoint of $\Gamma_{D''}(I_\sigma)$ and $\Gamma_{D''}(I_\sigma)\in \mathbf{J}_{l-1,n}$ with $\Gamma_{D''}(\sigma)(1)>b$. Hence $f_D(p)\in V_{y_n}$.

Let $p\in D\cap U_q$ for some $q\in A\backslash X_0$. If $p\in \widehat{Q}_{l-1}$ then $f_D(p)=f_{D'}(p)\in V$. If $p\in Q_l$ then $f_D(p)=h_{D''}(p)=\Gamma_{D''}^*(p)=\Gamma_E^*(p)\in V$ because $h_E(U_q)\subset V$.

Let $I_{\sigma} \in \mathbf{F}_D \cap \mathbf{I}_{l+1,n}$ for some $x_n \in A \cap X_0$ and let $\sigma(1) > c$. Either $\gamma_D(I_{\sigma}) = \Gamma_{D'}^*(I_{\sigma})$ or $\gamma_D(I_{\sigma}) = \Gamma_{D''}^*(I_{\sigma})$. In either case, $\gamma_D(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\gamma_D(\sigma)(1) > b > a$.

To show that conditions 3 and 4 hold, consider the sets $\mathbf{F} = \{I \in \mathbf{I}_{l+1} : I \subset$ $\bigcup \mathbf{F}_E$ and $\mathbf{G} = \{I \in \mathbf{F}_D : \sigma(1) \le a\}$. Define γ on \mathbf{G} by $\gamma(I) = \Gamma_E^*(I)$. Let $I_{\sigma} \in \mathbb{F}$. Then $I_{\sigma} \in \widehat{\mathbb{F}}_{D}$ because $E \subset D$ and $h_{D'}(I_{\sigma}) = h_{E}(I_{\sigma}) \in \widehat{\mathbb{F}}_{\theta(D)}$ because $\theta(E) \subset \theta(D)$. Assume that $I_{\sigma} \notin \mathbf{F}_{D1}$. Let $p \subset D \cap Q_1$. We will show that $f_D(p)$ cannot be an endpoint of $h_{D'}(I_{\sigma})$. If $p \in U_0$, then $f_D(p) \in V_0$. But $\Gamma_{D'}(\sigma)(1) \leq a$ so $f_D(p)$ is not an endpoint of $h_{D'}(I_{\sigma})$. If $p \in U_1$ then $p \in I_{\tau}$ for some $I_{\tau} \in I_{k+2}$ with $\tau(1) \le a$. By the induction hypotheses, $f_D(p) = h_{D''}(p) = h_E(p) \in h_E(I_\tau)$. If $\sigma \upharpoonright k + 2 \neq \tau$ then $I_{\sigma \upharpoonright k + 2} \cap I_\tau = \emptyset$ so pcannot be an endpoint of any subinterval of $I_{\sigma \uparrow k+2}$. If $\sigma \uparrow k+2=\tau$ then p is not an endpoint of I_σ because $I_\sigma \not\in \mathbf{F}_{D1}$. The assumption that $I_\sigma \not\in \mathbf{F}_{D1}$ also implies that $h_D(I_\sigma) = h_{D'}(I_\sigma) = h_E(I_\sigma)$. But h_E^{-1} is continuous at $h_E(p)$, so $h_E(p)$ cannot be an endpoint of $h_E(I_\sigma)$. Therefore $h_D(I_\sigma) \in \widehat{\mathbf{F}}_{\theta(D)} \setminus \mathbf{F}_{\theta(D)1}$ and $I_{\sigma} \in \mathbb{F}_{D2}$. By Lemma 3, $\gamma(I) = \Gamma_{E}^{*}(I)$ for all $I \in \mathbb{I}_{l+1}$. If $I \in \mathbb{G}$ then either $\gamma_D(I) = \Gamma_{D'}^*(I)$ or $\gamma_D(I) = \Gamma_{D''}^*(I)$. In either case, $\gamma_D(I) = \Gamma_E^*(I) = \gamma(I)$. Thus $\gamma_D(I_{\sigma}) \in \mathbf{J}_{l+1,n}$ and $\gamma_D(\sigma)(1) \leq a < b$ for all $I_{\sigma} \in \mathbf{F}_D \cap \mathbf{I}_{l+1,n}$ with $m \le \sigma(1) \le b$. By Lemma 4, if $I_{\sigma} \in I_{l+1,n}$ for some $x_n \in A \cap X_0$ and $\sigma(1)>c$, then $\Gamma_D(I_\sigma)\in \mathbf{J}_{l+1,n}$ and $\Gamma_D(\sigma)(1)>b$. By Lemma 5, if $I_\sigma\in \mathbf{I}_{l+1}$ and $\sigma(1) \leq a$, then $\Gamma_D(I_\sigma) = \Gamma_F^*(I_\sigma)$.

Now let $B\in [A,U]$ and let $B\in S_D$. Then $D\in M_l$ for some $l\geq k$ and $E\subset D\subset U$. Also, $B\cap X_0=A\cap X_0$ so $\lambda(B\cap X_0)=\lambda(A\cap X_0)\subset V$. Let $p\in B\setminus X_0$. If $p\in D$ then $f_D(p)\in V$ by Lemma 7. Assume that $p\not\in D$. There is $I_\sigma\in \mathbf{I}_{l+1}$ such that $p\in I_\sigma$. If $p\in U_{x_n}$ for some $x_n\in A\cap X_0$ then $I_\sigma\in \mathbf{I}_{l+1,n}$ and $\sigma(1)>c$. By Lemma 7, $h_D(I_\sigma)=\Gamma_D^*(I_\sigma)\in \mathbf{J}_{l+1,n}$ and $\Gamma_D^*(\sigma)(1)>b$. Thus $h_D(p)\in V$. If $p\in U_q$ for some $q\in A\setminus X_0$ then $\sigma(1)\leq a$. By Lemma 7, $h_D(I_\sigma)=\Gamma_D^*(I_\sigma)=\Gamma_E^*(I_\sigma)$. Thus $h_D(p)\in V$ because $h_E(U_q)\subset V$. Therefore $H(B)\in [H(A),V]$ and H is continuous. A similar argument shows that H^{-1} is continuous.

IV. RELATED RESULTS

Corollary 8. If X and Y are ω -graphs and D and E are equipotent discrete subsets of X and Y respectively, then $\bigcup_{p \in D} [p, X]$ is homeomorphic to $\bigcup_{p \in E} [p, Y]$.

Proof. Extend D and E to dividing sets X_0 and Y_0 of X and Y. Order the sets X_0 and Y_0 so that $\lambda(D)=E$. Then the homeomorphism defined in the proof of Theorem 1 takes $\bigcup_{p\in D}[p\,,X]$ to $\bigcup_{p\in E}[p\,,Y]$, so these two sets are homeomorphic.

The finally results are about spaces other than graphs or ω -graphs. Theorem 2 of [N] shows that points may be removed from certain T_1 spaces without affecting its Pixley-Roy hyperspace. The next three lemmas generalize this result. Theorem 12 applies this procedure to \mathbf{R}^n .

Lemma 9. If $\langle Z_n : n < \omega \rangle$ is a sequence of disjoint homeomorphic open and closed subsets of PR[X] such that $\bigcup_{n < \omega} Z_n$ is open and closed in PR[X], then $PR[X] \setminus Z_0 \approx PR[X]$.

Proof. For each $n < \omega$ let $H_n: Z_n \to Z_{n+1}$ be a homeomorphism. Define $H: PR[X] \to PR[X] \setminus Z_0$ by

$$H(A) = \left\{ \begin{array}{ll} A & \text{if } A \not\in \bigcup_{n < \omega} Z_n, \\ H_n(A) & \text{if } A \in Z_n. \end{array} \right.$$

Then H is a homeomorphism.

Lemma 10. If U is an open subset of space X and C is closed in U then $\bigcup_{p \in C} [p, U]$ is open and closed in PR[X].

Proof. Clearly $\bigcup_{p \in C} [p, U]$ is an open subset of PR[X]. Let

$$A\in U\backslash\bigcup_{p\in C}[p\,,U].$$

If $A \not\subset U$ then [A,X] is a neighborhood of A that misses $\bigcup_{p\in C}[p,U]$. If $A\subset U$ then $A\cap C=\varnothing$, so $[A,U\setminus C]$ is a neighborhood of A in PR[X] that misses $\bigcup_{p\in C}[p,U]$.

Lemma 11. Let $\langle U_n : n < \omega \rangle$ be a sequence of disjoint open subsets of a space X and let $\langle C_n : n < \omega \rangle$ be a sequence of subsets of X such that $C_n \subset U_n$ and C_n is closed in U_n for all $n < \omega$. Then $\bigcup_{n < \omega} \bigcup_{p \in C_n} [p, U_n]$ is open and closed in PR[X].

Proof. It is clear that $\bigcup_{n<\omega}\bigcup_{p\in C_n}[p\,,U_n]$ is open in PR[X]. By Lemma 10, each $\bigcup_{p\in C_n}[p\,,U_n]$ is closed in PR[X]. Let $A\in PR[X]$. Since A is finite and the U_n 's are disjoint, there is a finite subset B of ω such that $A\cap U_n\neq\varnothing$ if and only if $n\in B$. Then $(\bigcup_{m\in B}[A\,,U_m])\cap(\bigcup_{p\in U_n}[p\,,U_n])\neq\varnothing$ only if $n\in B$. Thus $\{\bigcup_{p\in C_n}[p\,,U_n]\colon n<\omega\}$ is locally finite, and $\bigcup_{n<\omega}\bigcup_{p\in C_n}[p\,,U_n]$ is closed.

Theorem 12. Let $0 < n < \omega$ and let $X = \{\overline{x} \in \mathbb{R}^n : 0 < |\overline{x}| < 1\}$ where $|\overline{x}|$ denotes the Euclidean norm. For any $0 < m < \omega$,

 $PR[\mathbf{R}^n] \approx PR[m \times \mathbf{R}^n] \approx PR[\omega \times \mathbf{R}^n] \approx PR[m \times X] \approx PR[\omega \times X].$

Proof. We will show that each of these spaces is homeomorphic to $PR[\mathbf{R}^n]$. Let D be a discrete subset of $\{x \in \mathbf{R}: x \geq 0\}$ which contains 0 and let $\pi: \mathbf{R}^n \to \mathbf{R}$

be the projection onto the first coordinate. Let $L = \{\overline{x} \in R^n : \pi(\overline{x}) \in D\}$ and let $C = \{\overline{x} \in \mathbf{R}^n : |\overline{x}| \in D\}$. If D is finite then $\mathbf{R}^n \setminus L = (|D| + 1) \times \mathbf{R}^n$ and $\mathbf{R}^n \setminus C = |D| \times X$. If D is infinite then $\mathbf{R}^n \setminus L \approx \omega \times \mathbf{R}^n$ and $\mathbf{R}^n \setminus C \approx \omega \times X$. Let $U_0 = \mathbf{R}^n$ and let $\langle U_k : 0 < k < \omega \rangle$ be a sequence of disjoint open balls in \mathbf{R}^n , each of which has empty intersection with L and C.

Set $C_0 = L$. For every $0 < k < \omega$ let C_k be a subset of U_k which is homeomorphic to L. Then C_k is closed in U_k for all $k < \omega$. For each $k < \omega$ set $Z_k = \bigcup_{p \in C_k} [p, U_k]$. By Lemma 10, each Z_k is open and closed in $\text{PR}[\mathbf{R}^n]$. By Lemma 11, $\bigcup_{0 < k < \omega} Z_k$ is open and closed in $\text{PR}[\mathbf{R}^n]$, so $\bigcup_{k < \omega} Z_k$ is open and closed in $\text{PR}[\mathbf{R}^n]$. Clearly each Z_k is homeomorphic to every other Z_k , so $\text{PR}[\mathbf{R}^n] \approx \text{PR}[\mathbf{R}^n] \setminus Z_0 \approx \text{PR}[\mathbf{R}^n \setminus L]$. If D is finite then $\text{PR}[\mathbf{R}^n] \approx \text{PR}[(|D|+1) \times \mathbf{R}^n]$. If D is infinite then $\text{PR}[\mathbf{R}^n] \approx \text{PR}[\omega \times \mathbf{R}^n]$.

Now let $C_0 = C$ and for every $k < \omega$ let C_k be a subset of U_k homeomorphic to C. Set $Z_k = \bigcup_{p \in C_k} [p, U_k]$ for all $k < \omega$. Again, $\langle Z_k : k < \omega \rangle$ is a sequence of disjoint homeomorphic open and closed subsets of $PR[\mathbf{R}^n]$ so $PR[\mathbf{R}^n] \approx PR[\mathbf{R}^n] \setminus Z_0 \approx PR[\mathbf{R}^n \setminus C]$. If D is finite then $PR[\mathbf{R}^n] \approx PR[|D| \times X]$. If D is infinite then $PR[\mathbf{R}^n] \approx PR[\omega \times X]$.

BIBLIOGRAPHY

- [D] Peg Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29 (1988), 93-106.
- [vD] E. K. van Douwen, *The Pixley-Roy topology on spaces of subsets*, Set-Theoretic Topology, Academic Press, New York, 1977, pp. 111-134.
- [L] D. J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), 139-158.
- [N] Jeffrey Norden, Pixley-Roy spaces over graphs, Topology Appl. (to appear).
- [W] M. L. Wage, Homogeneity of Pixley-Roy spaces, Topology Appl. 28 (1987), 45-57.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DAYTON, DAYTON, OHIO 45469